2023-2024 交换代数期末考试

- 1. Let $R = \mathbb{Z}, S = \{2^n, n \in \mathbb{N}\}, T = \{2n + 1, n \in \mathbb{Z}\}\$
 - (a) compute $S^{-1}\mathbb{Z}$ and $T^{-1}\mathbb{Z}$ and decide whether there are local ring.
 - (b) write down (or discribe) $Spec(\mathbb{Z})$ and $Spec(T^{-1}\mathbb{Z})$
 - (c) if $X \subseteq \mathbb{C}[x, y]$, then there exists a finite set $I \subseteq \mathbb{C}[x, y]$ such that the zero set V(X) = V(I)
- 2. Let R be a Noetherian ring, prove that
 - (a) the formal power series ring R[[x]] is also Noetherian
 - (b) suppose M is a finitely generated R-module, then M is Noetherian
- 3. Let $X = (a_{ij})_{2\times 2}$ be a 2 × 2 matrix with indeterminates a_{ij} , k be a field, $R = k[a_{11}, ..., a_{22}]$ and I be an ideal of R generated by entries of X^2
 - (a) compute the zero set V(I) of I
 - (b) prove that $\sqrt{I} = (det(X), Tr(X))$
- 4. Let k be a field, $R = k[x_1, x_2, x_3, x_4]$ be a polynomial ring
 - (a) Compute the hilbert polynomial of the polynomial ring $\mathbb{C}[x_1, x_2, x_3, x_4]$
 - (b) Let $S = \mathbb{C}[a^3, a^2b, b^3, ab^2]$, prove that S is a R-module and write down the free resolution and graded resolution of S
 - (c) compute the hilbert polynomial of S and the Krull dimension dim(S) of S
- 5. Let K be a field, X a subset of k^n
 - (a) write down a topology basis of k^n with respect to Zariski topology
 - (b) Let \overline{X} be the Zariski closure of X, prove that there exist a finite set $\{f_i, 1 \leq i \leq m\} \subseteq k[X_1, ..., X_n]$ such that $\overline{X} = \bigcap_{i=1}^m V(f_i)$
 - (c) give an equivalent relation on $GL_n(\mathbb{C})$ such that the Jordan canonical form of a given matrix A is equivalent to the diagonal matrix with diagonal elements the eigenvalue of A
- 6. Let R/S be an integral extension of rings
 - (a) prove the incomparability theorem
 - (b) Suppose R is a Noetherian domain, prove that R is UFD iff every prime ideals of R of height 1 is principle
 - (c) Let k be a field, prove that $dim(k[x_1, ..., x_n]) = n$
- 7. Let R be a Dedekind domain

- (a) prove that R is a Noetherian domain and write down a equivalent criteria for R to be a Dedekind domain
- (b) prove that $\mathbb{Z}[\sqrt{-5}]$ is a Dedekind domain but not a UFD
- (c) show that $\mathbb{Z}[\sqrt{-5}]$ has class number 2 and the equation $m^3 = n^2 + 5$ has no integers solution
- 8. Let R be a ring, M, N, S are R-modules
 - (a) give a counterexample showing that $S \otimes_R Hom_R(M, N)$ is not necessarily isomorphic to $Hom_R(S \otimes_R M, S \otimes_R N)$
 - (b) prove that if S is flat and M is finitely presented, then $S \otimes_R Hom_R(M, N) \simeq Hom_R(S \otimes_R M, S \otimes_R N)$
 - (c) prove that if U is a multiplicative subset of R and M is finitely presented, then $U^{-1}Hom_R(M, N) \simeq Hom_{U^{-1}R}(U^{-1}M, U^{-1}N)$