2023－2024 交换代数期末考试

1．Let $R=\mathbb{Z}, S=\left\{2^{n}, n \in \mathbb{N}\right\}, T=\{2 n+1, n \in \mathbb{Z}\}$
（a）compute $S^{-1} \mathbb{Z}$ and $T^{-1} \mathbb{Z}$ and decide whether there are local ring．
（b）write down（or discribe ） $\operatorname{Spec}(\mathbb{Z})$ and $\operatorname{Spec}\left(T^{-1} \mathbb{Z}\right)$
（c）if $X \subseteq \mathbb{C}[x, y]$ ，then there exists a finite set $I \subseteq \mathbb{C}[x, y]$ such that the zero set $V(X)=V(I)$
2．Let R be a Noetherian ring，prove that
（a）the formal power series ring $R[[x]]$ is also Noetherian
（b）suppose M is a finitely generated R－module，then M is Noetherian
3．Let $X=\left(a_{i j}\right)_{2 \times 2}$ be a 2×2 matrix with indeterminates $a_{i j}$ ，k be a field，$R=k\left[a_{11}, \ldots, a_{22}\right]$ and I be an ideal of R generated by entries of X^{2}
（a）compute the zero set $V(I)$ of I
（b）prove that $\sqrt{I}=(\operatorname{det}(X), \operatorname{Tr}(X))$
4．Let k be a field，$R=k\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ be a polynomial ring
（a）Compute the hilbert polynomial of the polynomial ring $\mathbb{C}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$
（b）Let $S=\mathbb{C}\left[a^{3}, a^{2} b, b^{3}, a b^{2}\right]$ ，prove that S is a R－module and write down the free resolution and graded resolution of S
（c）compute the hilbert polynomial of S and the Krull dimension $\operatorname{dim}(S)$ of S
5．Let K be a field，X a subset of k^{n}
（a）write down a topology basis of k^{n} with respect to Zariski topology
（b）Let \bar{X} be the Zariski closure of X ，prove that there exist a finite set $\left\{f_{i}, 1 \leq i \leq m\right\} \subseteq$ $k\left[X_{1}, \ldots, X_{n}\right]$ such that $\bar{X}=\bigcap_{i=1}^{m} V\left(f_{i}\right)$
（c）give an equivalent relation on $G L_{n}(\mathbb{C})$ such that the Jordan canonical form of a given matrix A is equivalent to the diagonal matrix with diagonal elements the eigenvalue of A

6．Let R / S be an integral extension of rings
（a）prove the incomparability theorem
（b）Suppose R is a Noetherian domain，prove that R is UFD iff every prime ideals of R of height 1 is principle
（c）Let k be a field，prove that $\operatorname{dim}\left(k\left[x_{1}, \ldots, x_{n}\right]\right)=n$
7．Let R be a Dedekind domain
(a) prove that R is a Noetherian domain and write down a equivalent criteria for R to be a Dedekind domain
(b) prove that $\mathbb{Z}[\sqrt{-5}]$ is a Dedekind domain but not a UFD
(c) show that $\mathbb{Z}[\sqrt{-5}]$ has class number 2 and the equation $m^{3}=n^{2}+5$ has no integers solution
8. Let R be a ring, M, N, S are R-modules
(a) give a counterexample showing that $S \otimes_{R} \operatorname{Hom}_{R}(M, N)$ is not necessarily isomorphic to $\operatorname{Hom}_{R}\left(S \otimes_{R} M, S \otimes_{R} N\right)$
(b) prove that if S is flat and M is finitely presented, then $S \otimes_{R} \operatorname{Hom}_{R}(M, N) \simeq H o m_{R}\left(S \otimes_{R}\right.$ $\left.M, S \otimes_{R} N\right)$
(c) prove that if U is a multiplicative subset of R and M is finitely presented, then $U^{-1} \operatorname{Hom}_{R}(M, N) \simeq$ $\operatorname{Hom}_{U^{-1} R}\left(U^{-1} M, U^{-1} N\right)$

