数学学院本科生 2023－2024 学年第二学期几何学（全英文）期末考试试卷

授淉老师：徐杉斌

Instructions：
（涉及的距离都是欧氏距离）
（写在其它位置要标明题号）
$\underline{e}_{i}=\left(0, \cdots, 0,{ }_{i}, 0, \cdots, 0\right) \in \mathbb{R}^{n}$.

1 ，Let G be the dihedral group of some regular polygon P in \mathbb{R}^{2} ，and $m \in \mathbb{N}^{*}$ be the number of elements in G ．
（a）Compute the number of sides of P ．
（b）Compute the interior angle of P ．

2，Let

$$
\underline{x}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \underline{x}_{2}=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad \underline{x}_{3}=\left[\begin{array}{c}
-3 \\
2
\end{array}\right]
$$

（a）Give two isometries of \mathbb{R}^{2} sending \underline{x}_{1} to \underline{x}_{2} ．
（b）Is there an isometry sending \underline{x}_{1} to \underline{x}_{2} and \underline{x}_{2} to \underline{x}_{3} at the same time？
（c）Compute the orthogonal projection of \underline{x}_{3} to the line $L\left(\underline{x}_{1}, \underline{x}_{2}\right)$ passing through \underline{x}_{1} and \underline{x}_{2} ．

3，Consider the map

$$
f:\{1,2, \cdots, 8\} \rightarrow\{1,2, \cdots, 8\}
$$

defined by

x	1	2	3	4	5	6	7	8
$f(x)$	2	3	4	1	8	6	5	7

Let G be the group generated by f ．Consider the G－action on $\{1,2, \cdots, 8\}$ ．
（a）Compute the number of G－orbits in $\{1,2, \cdots, 8\}$ ．
（b）How many elements of $\{1,2, \cdots, 8\}$ in each G－orbit？
（c）Compute $\operatorname{Stab}(4)$ ．

4，Let f and g be two affine transformations of \mathbb{R}^{3} ．We would like to use the following method to see if $f=g$ ：
（1）Choose finitely many points $\underline{x}_{1}, \cdots, \underline{x}_{k} \in \mathbb{R}^{3}$ ．
（2）Check if $f\left(\underline{x}_{1}\right)=g\left(\underline{x}_{1}\right), f\left(\underline{x}_{2}\right)=g\left(\underline{x}_{2}\right), \cdots$ and $f\left(\underline{x}_{k}\right)=g\left(\underline{x}_{k}\right)$ ．If yes，then $f=g$ ；if no，then $f \neq g$ ．

In order to make this method work，at least how many points do we need？What is the minimal possible value of k ？

5 ，Consider the group Aff \mathbb{R}^{3} and its action on lines in \mathbb{R}^{3} ．
（a）Compute $\operatorname{Stab}\left(L\left(\underline{0}, \underline{e}_{1}\right)\right)$ ．
（b）Compute $\operatorname{Stab}\left(L\left(\underline{0}, \underline{e}_{1}\right)\right) \cap \operatorname{Stab}\left(L\left(\underline{0}, \underline{e}_{2}\right)\right)$ ．

6 ，Consider lines in \mathbb{R}^{2} passing the origin．Take the affine chart

$$
\mathbb{A}=\left\{\left.\left[\begin{array}{c}
1 \\
x_{2}
\end{array}\right] \right\rvert\, x_{2} \in \mathbb{R}\right\}
$$

and call the corresponding x_{2} of a line passing the origin its affine coordinate．
Denote by $L_{1}, L_{2}, L_{3}, L_{4}$ the lines with coordinates $1,2,3,4$ respectively，and $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, L_{4}^{\prime}$ the lines with coordinates $-1,-3,-2,-4$ respectively．
（a）Is there a projective transformation sending $\left(L_{1}, L_{2}, L_{3}, L_{4}\right)$ to $\left(L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, L_{4}^{\prime}\right)$ ？If yes，how many such projective transformations are there？
（b）Is there a projective transformation sending $\left\{L_{1}, L_{2}, L_{3}, L_{4}\right\}$ to $\left\{L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, L_{4}^{\prime}\right\}$ ？If yes，how many such projective transformations are there？
（回忆者的注：＂sending $\left(L_{1}, L_{2}, L_{3}, L_{4}\right)$ to $\left(L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, L_{4}^{\prime}\right)$＂表示把 L_{1} 送到 L_{1}^{\prime}, L_{2} 送到 L_{2}^{\prime}, L_{3} 送到 L_{3}^{\prime}, L_{4} 送到 L_{4}^{\prime} ，顺序要对应；而＂sending $\left\{L_{1}, L_{2}, L_{3}, L_{4}\right\}$ to $\left\{L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, L_{4}^{\prime}\right\}$＂表示把集合 $\left\{L_{1}, L_{2}, L_{3}, L_{4}\right\}$送到集合 $\left\{L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, L_{4}^{\prime}\right\}, ~ L_{1}$ 不一定要去 L_{1}^{\prime} ，也可以去 $L_{2}^{\prime}, L_{3}^{\prime}$ 或 L_{4}^{\prime} 。考试时老师简单解释了这两个符号的区别．）

7，Pascal＇s theorem：consider the following hexagon inscribed in a circle．Denote by a, \cdots, f its vertices，and let

$$
\begin{aligned}
p & =L(a, b) \cap L(d, e), \\
q & =L(b, c) \cap L(e, f), \\
r & =L(c, d) \cap L(f, a) .
\end{aligned}
$$

Pascal＇s theorem tells us that p, q, r are collinear．
（a）Mark the vertices a, \cdots, f and the intersections p, q, r in the picture．
（b）Draw a new picture to show the dual theorem to Pascal＇s theorem．What does the dual theorem tell us about？
（回忆者的注：1．我忘了卷子有没有给出 Pascal 定理的结论；2．卷子上的图我没画，大概参考下面这个吧．）

