2024-2025 学年第二学期数学类概率论期末考试

回忆: 鸢喙

- 1. (a) 一个袋子里有 4 个白球和 5 个红球, 从中不放回的连续取三个球, 求结果顺序为"红白红"的概率;
- (b) 两个人约定在 7 点到 8 点在某地会面, 先到的人等候另一人 20 分钟, 过时就可离去, 试求两人能会面的概率.
- 2. 设 ξ 是取值于正整数的随机分布. 求证 ξ 具有无记忆性 (即对任意的正整数 $n, k, k > n, P(\xi = k | \xi > n) = P(\xi = k n)$) 当且仅当 ξ 为几何分布.
 - 3. (a) 求 $\xi \sim P(\lambda)$ 的母函数;
 - (b) 求 $\eta \sim N(\mu, \sigma^2)$ 的特征函数.
 - 4. 设 ξ 满足 $E\xi = 0$ 且 $D\xi = \sigma^2 < \infty$. 求证: $\forall \varepsilon > 0$,

$$P(|\xi| \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2},$$
$$P(\xi \ge \varepsilon) \le \frac{\sigma^2}{\sigma^2 + \varepsilon^2}.$$

5. (a) 若 (ξ, η) 的密度函数为

$$p(x,y) = \begin{cases} \frac{1}{\pi}, & x^2 + y^2 \le 1\\ 0, & x^2 + y^2 > 1 \end{cases}$$

试验证: ξ 与 η 不相关, 但它们不独立.

- (b) 若 P(X = C) = 1, C 是一个常数, 求证: X 和任何一个随机变量 Y 相互独立;
 - 6. (a) 证明: 若 ξ_n r 阶收敛于 ξ , 则 ξ_n 依概率收敛于 ξ .
 - (b) 举例说明逆命题不成立.
 - 7. (a) 叙述弱收敛的定义;
- (b) 证明海莱第二定理: f(x) 在 [a,b] 连续, $\{F_n(x)\}$ 是 [a,b] 上弱收敛于 F(x) 的一致有界非降函数列, a,b 是 F(x) 的连续点, 则

$$\lim_{n \to \infty} \int_a^b f(x)dF_n(x) = \int_a^b f(x)dF(x).$$