
Unified Multimodal Understanding via Byte-Pair Visual Encoding

Wanpeng Zhang1 Yicheng Feng1 Hao Luo1 Yijiang Li2 Zihao Yue3

Sipeng Zheng4 Zongqing Lu1,4†

1PKU 2UCSD 3RUC 4BeingBeyond

Abstract

Multimodal large language models (MLLMs) have made
significant progress in vision-language understanding, yet
effectively aligning different modalities remains a funda-
mental challenge. We present a framework that unifies
multimodal understanding by applying byte-pair encod-
ing to visual tokens. Unlike conventional approaches that
rely on modality-specific encoders, our method directly in-
corporates structural information into visual tokens, mir-
roring successful tokenization strategies in text-only lan-
guage models. We introduce a priority-guided encoding
scheme that considers both frequency and spatial consis-
tency, coupled with a multi-stage training procedure based
on curriculum-driven data composition. These enhance-
ments enable the transformer model to better capture cross-
modal relationships and reason with visual information.
Comprehensive experiments demonstrate improved perfor-
mance across diverse vision-language tasks. By bridging
the gap between visual and textual representations, our ap-
proach contributes to the advancement of more capable and
efficient multimodal foundation models.

1. Introduction

Multimodal Large Language Models (MLLMs) have made
significant progress in integrating visual and textual infor-
mation [1, 27, 34, 65]. Nevertheless, effectively represent-
ing visual information and aligning it seamlessly with tex-
tual content still remains a core challenge [5, 52]. Con-
ventional approaches primarily generate visual embeddings
using modality-specific encoders [23, 68] (such as CLIP
[43]), yet recent research suggests that directly discretiz-
ing visual information can facilitate a more unified token
representation [37, 38, 55, 72]. In a recent study, re-
searchers introduced a visual encoding scheme to vision
modality [71], analogous to the byte-pair encoding (BPE)
tokenization [25, 42, 50] in LLMs. Zhang et al. [71] theo-
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retically demonstrated that structurally integrating discrete
tokens enhances information preservation, thereby enabling
the Transformer models [57] to more effectively learn from
two-dimensional visual data. Although the preliminary re-
sults are promising, translating this theoretical framework
into practical multimodal models poses significant chal-
lenges: (1) devising sophisticated token encoding strate-
gies beyond simple frequency counting; (2) identifying
data composition strategies that maximize visual-language
alignment; and (3) designing effective training procedures
to fully leverage these BPE-encoded visual tokens. In this
paper, we address these challenges by exploring practical
implementations and optimization strategies for BPE-based
visual tokenization. Our comprehensive analysis highlights
key factors that significantly influence performance across
modalities and proposes corresponding optimization.

Specifically, we introduce a priority-guided encoding
scheme that accounts for both co-occurrence frequency and
spatial consistency of visual patterns. This novel approach
generates semantically enriched visual tokens, thereby pre-
serving the inherent structural information in images more
effectively. Moreover, we propose data composition strate-
gies that leverage a curriculum-based approach tailored
for optimizing multimodal learning, explicitly designed to
complement the visual BPE tokenization process. Unlike
conventional visual encoders [43, 66], which extract visual
features through a single forward pass [61, 67], visual BPE
tokenization generates hierarchical representations where
encoded tokens progressively capture increasingly intricate
visual patterns. Given this hierarchical property, an aligned
learning curriculum is necessary; tokens must first acquire
foundational semantic meanings through elementary visual-
text associations before advancing toward more sophisti-
cated visual reasoning tasks. Consequently, a multi-stage
training procedure is further derived with stage-specific pa-
rameter freezing strategies: (1) embedding alignment with
frozen language model parameters, (2) selective fine-tuning
of early transformer layers, and (3) full model fine-tuning.
This incremental training approach facilitates more effec-
tive cross-modal knowledge transfer while maintaining the



linguistic capabilities inherent to the foundation model.
We conduct extensive experiments across various bench-

marks, consistently demonstrating that our proposed op-
timization strategies achieve substantial performance im-
provements compared to baseline approaches and prior
studies. In addition to quantitative improvements, we pro-
vide detailed analyses of token patterns, computational effi-
ciency, and qualitative improvements in visual comprehen-
sion capabilities.

Our contributions are summarized as follows:
• A discrete tokenization approach that preserves structural

information in images through priority-guided encoding,
providing unified visual representation for MLLMs.

• A progressive training strategy that combines stage-
specific parameter freezing, allowing models to build bet-
ter visual understanding.

• Empirical evidence across multiple benchmarks and ex-
tensive analysis that validates the effectiveness of our uni-
fied encoding methods and elucidates the reason why it
advances visual-language understanding.

2. Related Work

2.1. Representation Methods in MLLMs
The core challenge of Multimodal Large Language Models
(MLLMs) lies in effectively representing and integrating in-
formation from different modalities. The research commu-
nity has primarily developed two representative approaches:
methods based on continuous representations and methods
based on discrete tokens.

Continuous token representation methods have emerged
as the mainstream paradigm, with representative works such
as LLaVA [33, 34], Emu [53, 59], DeepSeek-VL [36, 60],
and Qwen-VL [2, 3, 58]. These models use pre-trained vi-
sual encoders (e.g., CLIP [43]) to map images into continu-
ous vector representations, which are then aligned with lan-
guage models through projection layers [15, 69]. Although
this approach has achieved significant results across vari-
ous downstream tasks, it faces two fundamental challenges:
first, the modality gap between encoders and language mod-
els [6, 22], wherein the high-dimensional continuous fea-
tures provided by visual encoders differ from the discrete
token representations expected by language models; sec-
ond, the information bottleneck problem, wherein images
compressed through visual encoders may lose substantial
detailed information, particularly affecting low-frequency
visual patterns [44]. Recent analysis [4, 21, 62] indicates
that this architectural design makes models prone to visual
hallucinations, generating descriptions even when relevant
visual information is absent.

Discrete token representation methods have gained in-
creasing attention in recent years, with representative
works including Unicode [72], Unified-IO [37, 38], and

Chameleon [55]. These methods typically use vector quan-
tization models (such as VQ-GAN [12] or VQVAE [46, 56])
to discretize images into a series of tokens, thereby enabling
visual information to be processed in a form similar to text.
The advantage of this approach lies in its ability to process
multimodal inputs in a unified manner, thus reducing inter-
modal differences. However, existing discrete token meth-
ods also have significant limitations: most works simply
quantize images into fixed-size tokens without considering
the semantic structure of visual content; information loss
during quantization may lead to the loss of fine-grained vi-
sual details; and the unbalanced representation of key visual
concepts in the token space can result in limited recognition
capability for certain visual patterns.

These methods differ significantly from tokenization
strategies used in natural language processing. In the NLP
domain, algorithms such as BPE form semantically mean-
ingful tokens by combining frequently co-occurring char-
acter sequences [14], a strategy that has proven benefi-
cial for Transformer learning [40, 41]. Research by [45]
demonstrates that for Markov sequence data, even smaller
Transformer models can significantly reduce prediction loss
when using appropriate tokenization strategies.

2.2. BPE Tokenization for Visual Data

Extending tokenization strategies such as BPE to the visual
domain represents an emerging research direction [7, 47].
The core idea is to form a more semantically meaning-
ful visual vocabulary by combining frequently co-occurring
visual patterns based on quantized images. Zhang et al.
[71] first proposed a theoretical framework for applying
BPE to quantized visual data, demonstrating that for two-
dimensional data conforming to specific generative pro-
cesses, using visual BPE can significantly reduce model
prediction loss. Their analysis indicates that compared to
unigram models based on independent and identically dis-
tributed assumptions, BPE tokenization can more effec-
tively capture structured patterns in visual data.

However, significant challenges remain in the transi-
tion from theory to practice. The implementation of [71]
uses primarily frequency-based encoding without consider-
ing spatial relationships that are crucial in visual data. The
relationship between vocabulary size and performance, as
well as strategies that balance frequency with spatial con-
sistency, remain underexplored. Besides, designing effec-
tive training procedures that leverage the unique properties
of BPE visual tokens is also important. Research on param-
eter freezing strategies [17, 54] suggests that different set-
tings at various training stages can impact the performance,
but these findings have not been systematically applied to
visual BPE training.

Our work addresses these gaps by exploring enhance-
ment strategies for visual BPE tokenization across vocab-



Figure 1. Overview of our framework. The upper part shows the BPE vocabulary construction process: starting from a training dataset, we
identify candidate token pairs and apply our priority scoring mechanism (combining frequency and spatial consistency) to iteratively extend
the vocabulary with new encoded tokens. The lower part illustrates the MLLM pipeline: an input image is first quantized using a VQ-GAN
codebook, then encoded using the trained vocabulary. The resulting visual tokens (e.g., token 381 representing the whole “cat” and 249
representing the whole “box”) are seamlessly integrated with text tokens to form a unified sequence for multimodal understanding.

ulary construction, data composition, and training proce-
dures. Through these contributions, we aim to advance the
practical application of BPE visual tokenization in multi-
modal foundation models.

3. Method
In this section, we first begin by introducing key concepts
and notation for our visual tokenization framework. Then
we introduce the details of our method.

3.1. Visual Tokenization Pipeline
The core of our approach involves transforming visual in-
formation into token sequences that can be processed by
language models. This transformation occurs through a
pipeline with the following key steps:
Vector Quantization (VQ). Given an image I divided into
patches, we first apply a VQ model with a codebook V =
{v1, v2, ..., vK} containing K entries. This process maps
each image patch to its closest codebook entry, producing a
grid of discrete indices Q(I) = {qi,j}h,wi,j=1, where h and w
represent the height and width of the patch grid.
BPE Visual Tokenization. The BPE visual tokeniza-
tion process, denoted as T (Q(I)), identifies frequently co-
occurring patterns in the quantized representation and en-
codes them into new tokens, creating an extended vocabu-
lary D = V ∪Vext, where Vext represents the set of encoded
tokens. Formally, the tokenization function T : Q(I) →
(t1, t2, ..., tn) maps the quantized image to a sequence of

tokens ti ∈ D, where n ≤ h × w due to the encoding of
multiple indices into single tokens.

This approach parallels BPE tokenization in text pro-
cessing but adapts it for two-dimensional visual data, incor-
porating spatial relationships that are unique to the visual
modality.

3.2. Token-Based MLLM
Unified Token Sequence. We formalize our token-based
multimodal language model as a conditional probability
distribution over token sequences. Given a text input X =
(x1, x2, ..., xm) and an image input I , the model processes
the combined sequence and generates output tokens autore-
gressively. The combined input consists of special tokens
marking the beginning and end of the tokenized image rep-
resentation:

S = (x1, . . . , xm, [BOI], t1, . . . , tn, [EOI], . . .), (1)

where [BOI] and [EOI] are special tokens indicating the im-
age boundary in the sequence.
Autoregressive Modeling. The model defines a probability
distribution over the next token given all previous tokens:

p(si|s<i) = Softmax(fθ(E(s1), E(s2), ..., E(si−1))),
(2)

where fθ represents the transformer-based language model
with parameters θ, and E(si) represents the embedding of



token si. For model generation, tokens are sampled sequen-
tially:

ŝi ∼ p(si|ŝ1, ŝ2, ..., ŝi−1, x1, x2, ..., xm, t1, t2, ..., tn).
(3)

Training Objective. The model is trained to minimize
the negative log-likelihood of the target sequence Y =
(y1, y2, ..., yl) conditioned on the input:

L(θ) = −E(X,I,Y )∼D

 |Y |∑
i=1

log pθ(yi|y<i, X, T (Q(I)))

 ,

(4)
where D represents the training dataset containing input-
output triplets.

3.3. Framework Overview
As formalized in the preliminaries above, our token-based
multimodal model processes visual information through a
pipeline that includes vector quantization Q(·) and visual
tokenization T (·) before integration with text tokens in a
language model. Our optimizations target each component
of this pipeline while considering their interdependencies.

Specifically, our framework enhances this pipeline
through: (1) Enhanced Vocabulary Construction; (2) Op-
timized Data Composition Strategies; (3) Efficient Multi-
Stage Training. These components work together to im-
prove the model’s ability to process visual information,
align visual and textual representations, and generate accu-
rate responses to multimodal inputs.

Figure 1 illustrates the overall framework, which oper-
ates in two phases. In the vocabulary construction phase
(upper part), we train a BPE vocabulary using our priority-
guided encoding scheme that considers both co-occurrence
frequency and spatial consistency. This approach creates
an extended vocabulary that effectively captures meaningful
visual patterns beyond what frequency-only methods can
achieve. In the application phase (lower part), input images
are first quantized through a VQ-GAN model, then encoded
using the trained vocabulary. The resulting visual tokens
are integrated with text tokens to form a unified sequence
for the language model.

3.4. Vocabulary Construction
The effectiveness of token-based representations hinges on
creating a vocabulary that efficiently captures meaningful
patterns in the data. Our enhanced vocabulary construction
method extends beyond simple frequency-based encoding
to incorporate structural information specific to visual data,
while relying exclusively on image statistics without refer-
ence to textual information.

In standard BPE tokenization, token pairs are encoded
based solely on their co-occurrence frequency. While effec-
tive for text, this can be suboptimal for visual data where

Algorithm 1 Priority-Guided Encoding

Input: Quantized training data C, initial vocabulary V ,
target vocabulary size |D|
D ← V
while |D| < target size do

Compute F (a, b) and S(a, b) for all adjacent token
pairs in C

Calculate priority P (a, b) = F (a, b)+α ·S(a, b) and
select top-k pairs by priority: {(a1, b1), . . . , (ak, bk)}.

(a∗, b∗)← argmaxi∈{1,...,k} P (ai, bi)
Create new token c = (a∗, b∗)
D ← D ∪ {c}
Update C by replacing all adjacent occurrences of

(a∗, b∗) with c (horizontally or vertically).
end while
return D

spatial relationships play crucial roles. We introduce a pri-
ority function P (a, b) that guides the encoding process with
a more comprehensive evaluation of candidate token pairs:

P (a, b) = F (a, b) + α · S(a, b). (5)

This function combines two key factors:
• Co-occurrence frequency F (a, b): The raw frequency

with which tokens a and b appear adjacent to each other,
normalized across the training corpus of quantized im-
ages.

• Spatial consistency S(a, b): A measure of how consis-
tently the token pair maintains spatial relationships across
different images, calculated as:

S(a, b) =
1

Na,b

Na,b∑
i=1

d(ui(a, b), ū(a, b)). (6)

Here, ui(a, b) represents the relative positioning of tokens a
and b in instance i, ū(a, b) is the average relative positioning
across all instances, Na,b is the number of co-occurrences,
and the spatial distance function is defined as:

d(u1, u2) = exp

(
−∥u1 − u2∥2

2σ2

)
, (7)

where ∥u1− u2∥ is the Euclidean distance between the two
relative position vectors, and σ is a scaling parameter that
controls how quickly similarity decreases with distance.
This formulation ensures that token pairs with consistent
spatial relationships across images receive higher scores.

The weighting parameter α controls the relative im-
portance of each factor and is determined through cross-
validation on a development set. This dual-factor approach
ensures that encoded tokens represent not only frequent pat-
terns but also spatially consistent visual structures. It’s im-



portant to emphasize that this entire process relies exclu-
sively on image data, with no dependency on textual infor-
mation or captions. The algorithm identifies patterns based
solely on the statistical and structural properties of the vi-
sual content. Algorithm 1 outlines our priority-guided en-
coding process with diversity filtering. For complete details,
please refer to Algorithm 2 in the Appendix.

3.5. Model Expanding
Once we have constructed our enhanced visual vocabulary
D, we need to expand the pre-trained language model to
accommodate these new tokens. This expansion process
serves as the bridge between our tokenization approach and
the subsequent model training. Given a pre-trained lan-
guage model M with a text vocabulary Vtext and correspond-
ing embedding weights Etext ∈ R|Vtext|×d (where d is the
embedding dimension), we expand the embedding layer to
incorporate the visual vocabulary D:

Eexpanded =
[
Etext, Evisual

]
∈ R(|Vtext|+|D|)×d, (8)

where Evisual ∈ R|D|×d represents the newly added em-
beddings for visual tokens. This expansion increases the
model’s vocabulary size from |Vtext| to |Vtext|+ |D|.

For the initialization of the newly added visual to-
ken embeddings, we adopt He initialization [20], i.e.,
Evisual[i, j] ∼ N (0,

√
2/dl), where dl is the embedding di-

mension. This initialization helps maintain proper signal
magnitude throughout the network, preventing vanishing or
exploding gradients during the early stages of training.

The process is illustrated in the top part of Figure 2. We
first extend a VQ token embedding corresponding to the
VQ-GAN codebook, and then extend a BPE token embed-
ding corresponding to the BPE vocabulary. The extended
weights from these two components constitute the initializa-
tion of the visual part. By default, we standardize both di-
mensions of them to 8K, corresponding to an 8K VQ code-
book and an 8K BPE vocabulary, respectively.

3.6. Multi-Stage Training
With the expanded model supporting both text and visual
tokens, we now introduce our multi-stage training pipeline.
Our approach combines strategic data composition with
stage-specific parameter freezing to maximize the effective-
ness of visual tokenization. Figure 2 illustrates the overall
process.

3.6.1. Curriculum-Based Data Composition
We develop a curriculum-based data composition strategy,
which is designed to complement the BPE visual tokeniza-
tion. Unlike traditional visual encoders that extract features
in a single forward pass, BPE visual tokenization creates
a hierarchical representation where encoded tokens incre-
mentally capture more complex visual patterns. This hier-

BPE

process

Stage 1

Stage 2

Stage 3

Multimodal
Data

Unified
Tokens

basic complex

multi-stage
data

align/sft

text-LLM Unified-MLLM

extend & init
weights

VQ BPE

Figure 2. Illustration of our multi-stage training strategy. The
bottom part shows multimodal data being processed into uni-
fied tokens. The middle curves represent the data distribution
across training stages, showing a gradual shift from basic con-
cepts (Stage 1) to more balanced (Stage 2) and finally complex
reasoning-focused data (Stage 3). The top part illustrates how we
expand a text-only LLM to incorporate visual capabilities through
weight initialization and alignment, resulting in a unified multi-
modal model. This curriculum approach mirrors the hierarchical
nature of BPE visual tokens, which progressively capture more
complex visual patterns throughout the learning process.

archical nature of BPE tokens requires a matching learn-
ing curriculum: tokens must first establish basic seman-
tic meanings through simple visual-text associations before
they can be effectively utilized for complex reasoning.

Specifically, we categorize our training data into four
types based on complexity: Foundation Data (basic image-
caption pairs), Perception Data (detailed visual attributes),
Reasoning Data (complex visual QA), and Instruction Data
(multi-turn interactions). Details of all types of datasets can
be found in the Appendix A.4.

We employ a curriculum that progressively shifts em-
phasis across training stages, formalized as a composition
ratio Ri(s) = wi(s)/

∑
j wj(s), where Ri(s) represents

the proportion of data type i at stage s with corresponding
weight wi(s). Each stage employs distinct composition ra-
tios, transitioning from foundation-heavy in early stages to
instruction-focused in later stages. This curriculum ensures
that visual tokens first establish basic meanings before tack-
ling complex reasoning tasks.

This stage-specific curriculum ensures that the model
first develops strong foundational visual understanding be-
fore focusing on more complex tasks, aligning with the pa-
rameter freezing strategy of each stage.

3.6.2. Progressive Parameter Unfreezing
Complementing our data curriculum, we implement stage-
specific parameter freezing to control which components of
the model are updated at each stage. The parameter update



Model Params Tokenizer Benchmark
VQAv2 MMBench MME-P SciQA-IMG POPE VizWiz

Continuous Embedding-Based Models

InstructBLIP 7B Continuous 75.2 38.3 1212.8 60.5 81.5 34.5
LLaVA-1.5 7B Continuous 78.5 64.3 1510.7 66.8 85.9 50.0
mPLUG-Owl2 8B Continuous 79.4 64.5 1450.2 – 86.1 54.5
HyperLLaVA 7B Continuous 79.1 65.9 1481.2 70.4 86.3 51.9
ShareGPT4V 7B Continuous 80.6 68.8 1567.4 68.4 – 57.2
VILA-1.5 8B Continuous 80.9 72.3 – – 84.4 58.7
LLaVA-Next 7B Continuous 81.8 67.4 1519.0 70.1 86.5 57.6

Discrete Token-Based Models

Chameleon 7B Discrete 56.2 37.3 1297.5 – 78.2 46.4
Being-VL-0 8B Discrete 60.6 44.0 1316.2 64.3 81.3 48.2
Unified-IO-2 7B Discrete 79.4 71.5 – 86.2 87.7 –
UniBPE-VL w/o BPE 8B Discrete 54.3 38.2 1301.2 57.8 76.1 45.0
UniBPE-VL 8B Discrete 80.2 71.8 1525.8 70.3 84.3 57.4
UniBPE-VL+ 8B Discrete 80.6 72.1 1536.3 69.0 86.0 57.8

Table 1. Performance comparison of different visual-language models across standard benchmarks. Models are grouped by tokenizer type
(Continuous / Discrete). The best performance in each group is bolded, while second-best result in each group is underlined.

can be expressed as:

θs+1 = θs − η ·Ms ⊙∇θL, (9)

where θs represents the model parameters at stage s, η is the
learning rate, ∇θL is the loss gradient, ⊙ denotes element-
wise multiplication, and Ms is a binary mask that deter-
mines which parameters are updated during stage s.

Our training pipeline consists of three stages with differ-
ent masks and objectives:

Stage 1: Embedding Alignment focuses exclusively on
training the newly extended visual token embeddings while
freezing the rest of the model. The mask is defined as
M1[i] = 1 if parameter i belongs to new embeddings, 0 oth-
erwise. This alignment establishes basic visual-linguistic
associations without disrupting pre-trained language capa-
bilities.

Stage 2: Selective Fine-tuning unfreezes early trans-
former layers while keeping later layers frozen, with
M2[i] = 1 if parameter i is in layers 1 to k (25% of to-
tal layers in our default implementation), 0 otherwise. This
enhances cross-modal interactions in the feature integration
layers using a broader range of data types.

Stage 3: Full Fine-tuning unfreezes all parameters
(M3[i] = 1,∀i) and emphasizes complex reasoning and
instruction-following data. This stage refines the model’s
advanced capabilities while building upon the foundation
established in earlier stages.

4. Experiments
In this section, we empirically evaluate our designed frame-
work and training pipelines. Based on the methods de-
scribed in Section 3, we train our model UniBPE-VL

with an 8K extended vocabulary and a variant UniBPE-
VL+ with a 16K extended vocabulary. We first describe
our experimental setup, then present comprehensive results
demonstrating the effectiveness of our approach compared
to baselines. We further conduct detailed analyses of each
component in our framework to validate our design choices.
Considering the limited space, please refer to the Appendix
A for complete details about our experiments.

4.1. Experiments Setup

Evaluation Benchmarks: We conduct evaluation on
widely-used benchmarks [28, 29] that assess different as-
pects of visual understanding: VQAv2 [16] and VizWiz [19]
for general visual question answering, MMBench [35] for
comprehensive multimodal understanding, MME-P [13] for
perception capabilities, SciQA-IMG [39] for scientific rea-
soning, and POPE [30] for hallucination evaluation.

Baselines: We primarily focus on open-source models
with comparable parameters and similar training data scales
to ensure that performance differences reflect architectural
choices rather than scale advantages. We compare our
UniBPE-VL against two kinds of baselines: continuous
embedding-based models and discrete token-based models.
Continuous embedding-based models include InstructBLIP
[10], LLaVA-1.5/LLaVA-Next [32, 33], mPLUG-Owl2 [63,
64], HyperLLaVA [70], ShareGPT4V [9], and VILA-1.5
[31]. Discrete token-based models include Chameleon [55],
Being-VL-0 [71], and Unified-IO-2 [38]. We also compare
‘UniBPE-VL w/o BPE’, which is a variant that completely
removes the BPE part and retains only the base VQ token
embedding. This is used to investigate the effectiveness of
our framework’s core BPE design.
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Figure 3. Visualization of embedding weight distributions across
three model variants. The heatmaps represent sampled weights
from the embedding matrices (4096 dimensions), wherein color
intensity indicates weight magnitude (blue for negative, red for
positive). The depth of the color indicates the activation magni-
tude of the corresponding token embedding during model infer-
ence. Top: LLM+VQ (UniBPE-VL w/o BPE) with text tokens
(32K) + VQ tokens (8K). Middle: LLM+VQ+BPE-8K (UniBPE-
VL) with text tokens (32K) + VQ tokens (8K) + BPE tokens (8K).
Bottom: LLM+VQ+BPE-16K (UniBPE-VL+) with text tokens
(32K) + VQ tokens (8K) + BPE tokens (16K).

4.2. General Visual Understanding

Table 1 presents our models’ performance compared to
baselines. Our framework effectively narrows the perfor-
mance gap between discrete token-based models and con-
tinuous embedding-based models. Both UniBPE-VL and
UniBPE-VL+ achieve competitive performance across all
benchmarks, with UniBPE-VL+ reaching 80.6 on VQAv2
and 72.1 on MMBench, comparable to the best continuous
embedding-based models like VILA-1.5 (80.9 and 72.3 re-
spectively). UniBPE-VL+ demonstrates strong perception
capabilities with 1536.3 on MME-P, outperforming many
continuous embedding models.

Among discrete token-based approaches, Being-VL-0
represents the work most closely aligned with our method,
as both implement BPE-based visual tokenization. Our
method outperforms Being-VL-0 across all benchmarks,
with notable gains on MMBench (71.8 vs. 44.0) and MME-
P (1525.8 vs. 1316.2). These improvements are attributable
to our enhanced vocabulary construction and optimized
training strategies. Unified-IO-2 achieves stronger perfor-
mance on SciQA-IMG (86.2 vs. our 70.3), but it is worth
noting that our models evaluate this benchmark in a zero-
shot manner without task-specific fine-tuning.

Additionally, our method achieves an optimal balance
between capturing low-level visual details and modeling
high-level semantic concepts, with reduced hallucination
on POPE (84.3 for UniBPE-VL, 86.0 for UniBPE-VL+)
compared to earlier discrete token approaches. When eval-

uating the overall performance across all benchmarks, our
method demonstrates competitive results while maintaining
the advantages of unified token representation.

Furthermore, the significant performance drop of
‘UniBPE-VL w/o BPE’ on all benchmarks also highlights
the necessity of the BPE vocabulary as a core part of
our framework. We also conducted a qualitative case
study, which provides additional evidence of UniBPE-VL’s
comprehensive visual understanding. For detailed results,
please refer to Section B.

4.3. BPE Token Activation Mechanism
Figure 3 visualizes embedding weight distributions across
our model variants, revealing key insights into how BPE
tokenization helps unifying multimodal knowledge. In
the base LLM+VQ model (top), which is a variant re-
moving BPE vocabulary, we observe a contrast between
text (0-32K) and visual tokens (32K-40K). Text tokens ex-
hibit predominantly low-magnitude weights (lighter col-
ors), while visual tokens exhibit significantly higher mag-
nitudes (deeper colors). This imbalance suggests that the
model struggles to establish a unified representation space
across modalities. With BPE tokenization (middle and
bottom panels), this pattern changes substantially. These
two models show more balanced weight distributions, sug-
gesting BPE helps bridge the representation gap between
modalities, creating a more unified semantic space for
visual-textual interaction. This visualization elucidates why
models with improved BPE patterns yield superior perfor-
mance, thereby outperforming Being-VL-0.

However, some BPE tokens exhibit minimal activation
(near-zero weights), appearing as white vertical stripes.
This pattern is more evident in the 16K variant, where more
embeddings remain unused. Intuitively, we hypothesize that
this is because the current training does not fully utilize
these 16K tokens, which may explain why UniBPE-VL+

underperforms UniBPE-VL on certain tasks. Concurrently,
this observation inspires us to examine the trade-offs be-
tween representational capacity and learning efficiency.

4.4. Scaling Potential and Training Efficiency
To further investigate the trade-offs between vocabulary
size, performance scaling, and training efficiency, we con-
ducted extended experiments using the same checkpoint.
Figure 4 presents our findings comparing three vocabulary
sizes (4K/8K/16K) across varying data scales. For per-
formance evaluation, we computed the normalized mean
scores across four benchmarks (MME, POPE, VQAv2, and
MMBench) and normalized them relative to the 4K vocab-
ulary model at standard training data (1.0×), providing an
intuitive comparison of relative performance gains.

The horizontal axis serves dual purposes: for perfor-
mance curves, it represents the relative amount of training
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Figure 4. Scaling potential and training efficiency compari-
son for different vocabulary sizes (4K, 8K, 16K). Performance
curves (solid lines) show relative performance gains as training
data increases, while efficiency curves (dashed lines) illustrate the
performance-to-cost ratio. All metrics are normalized relative to
the 4K vocabulary model at standard training data amount (1.0×).

Configuration Curriculum Progressive Avg. Score

Perception Reasoning

Standard ✓ ✓ 80.3 71.1
Progressive only – ✓ 74.9 65.1
Curriculum only ✓ – 76.8 67.5
Single stage – – 71.2 62.3

Table 2. Ablation study on different components in training. Con-
figurations marked with “–” use a fixed data mixture ratio through-
out training or employ a standard full fine-tuning approach.

data; for efficiency curves, it represents the total cost fac-
tor, incorporating computational resources × training time.
Specifically, total cost increases with both vocabulary size
and data amount. Our results reveal an important trade-
off: while the 16K vocabulary shows superior scaling po-
tential, eventually outperforming both 4K and 8K mod-
els as training data increases beyond 1.5×, its efficiency
(performance-to-cost ratio) remains consistently lower than
smaller vocabulary models. In contrast, the 8K vocabulary
achieves a better balance, showing strong performance scal-
ing while maintaining reasonable efficiency.

4.5. Analysis of Multi-Stage Training
We conduct ablation studies to investigate the impact of
the multi-stage training. Table 2 shows that our stan-
dard approach achieves clear improvements over the single-
stage training (12.8% and 14.1% higher on perception and
reasoning tasks respectively), demonstrating the effective-
ness of the overall strategy. The results reveal that both
curriculum-based data composition and progressive param-
eter unfreezing contribute to the performance, with curricu-

Curriculum Strategy Avg. Score

Perception Reasoning

Progressive (FD→ PD→ RD→ ID) 80.3 71.1
Reverse (ID→ RD→ PD→ FD) 73.4 64.0
Random 77.3 68.4

Table 3. Analysis of different curriculum strategies. FD, PD,
RD, and ID refer to Foundation Data, Perception Data, Reason-
ing Data, and Instruction Data as described in Section 3.6.1.

Unfreezing Strategy Avg. Score

Perception Reasoning

3-stage (align→ selective→ full) 80.3 71.1
2-stage (align→ full) 78.2 69.3
Reverse order 72.1 63.0

Table 4. Analysis of different parameter unfreezing strategies.

lum data composition showing a stronger impact.
Table 3 shows that the shifting of data types matters

significantly. Our curriculum design outperforms both re-
verse ordering and random mixing. This aligns with our
design principle that visual BPE tokens should first estab-
lish basic semantic meanings before tackling complex rea-
soning tasks. Similarly, Table 4 highlights the value of
our three-stage progressive approach for parameter unfreez-
ing. The simplified two-stage method shows modest perfor-
mance differences (2.7% lower on perception tasks), while
reverse unfreezing leads to more notable performance drops
(11.4% lower on perception tasks), suggesting that the order
of parameter updates affects how well the model integrates
visual and textual information.

5. Conclusions, Limitations, and Future Work
This paper presents a unified visual tokenization frame-
work that enhances multimodal understanding through
three key innovations: priority-guided vocabulary construc-
tion that considers both frequency and spatial patterns,
curriculum-based data composition that aligns with token
complexity progression, and a specialized multi-stage train-
ing procedure. Our comprehensive experiments across di-
verse benchmarks demonstrate that this approach effec-
tively bridges the gap between visual and textual modali-
ties, achieving competitive performance compared to con-
tinuous embedding-based methods while maintaining the
advantages of a unified token representation.

Our current study focused on models with 8B parame-
ters due to computational constraints. While these models
already show promising results, our scaling analysis indi-
cates potential for further improvements with more training
data. The observed relationship between vocabulary size
and performance suggests that further scaling could achieve
even stronger multimodal understanding capabilities.

A natural extension of our unified token-based approach



is multimodal generation. Unlike models using separate en-
coders for different modalities, our framework enables the
model to generate visual tokens in the same way it gen-
erates text tokens, establishing a truly unified representa-
tion paradigm. Although the current work concentrates on
understanding tasks, extending our approach to incorporate
generation capabilities constitutes a promising direction for
future research.
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A. Implementation Details

A.1. Model Configuration
We use Llama-3.1-8B [11] as our base language model due
to its strong performance on language tasks and efficient ar-
chitecture. For visual quantization, we employ a pretrained
VQ-GAN model with a codebook size of 8192, which pro-
vides sufficient granularity for capturing visual details while
maintaining computational efficiency. When applying our
visual BPE tokenization, we experiment with extended vo-
cabulary sizes ranging from 4K, 8K to 16K additional to-
kens to investigate the trade-off between representational
capacity and learning efficiency as discussed in Section 4.3.

For priority-guided encoding, we set spatial consistency
weight α = 0.3 and scaling parameter σ = 2.0 by de-
fault, determined through ablation studies on a validation
set. These parameters balance the influence of frequency
and spatial consistency in token pair selection.

A.2. Hyperparameters for the VQ-GAN model
The hyperparameters for the VQ-GAN model used in our
experiments are shown in Table 5. The embedding dimen-
sion of 256 and codebook size of 8192 were chosen to pro-
vide sufficient representational capacity while maintaining
computational efficiency. The input resolution of 512 al-
lows for capturing fine-grained visual details without ex-
cessive memory requirements. We disabled dropout to pre-
serve maximum visual information during the quantization
process.

Hyperparameter Value

embedding dimension 256
codebook size 8192

z channels 256
resolution 512
dropout 0

Table 5. Hyperparameters for the VQ-GAN model

A.3. Hyperparameters for multi-stage training
The hyperparameters for multi-stage training are shown in
Table 6. We carefully designed these parameters to align
with the objectives of each training stage. In Stage 1, we use
a higher learning rate (1e-3) to efficiently align the newly
initialized visual token embeddings. For Stages 2 and 3,
we reduce the learning rate (3e-5 and 5e-5 respectively) to
prevent catastrophic forgetting while enabling meaningful
updates to transformer layers. We increase gradient accu-
mulation in later stages to effectively handle more complex
data types. All stages use a cosine learning rate schedule
with a 3% warmup period to stabilize training.

Hyperparameter Stage 1 Stage 2 Stage 3

batch size 1 1 1
gradient accumulation 2 4 4

learning rate 1e-3 3e-5 5e-5
learning schedule cosine cosine cosine

warmup ratio 0.03 0.03 0.03
weight decay 0 0 0

epoch 2 3 3
optimizer AdamW AdamW AdamW

deepspeed stage 2 2 2

Table 6. Hyperparameters for multi-stage training

A.4. Data Details
Following our categorization in Section 3.6.1, we use a di-
verse set of datasets for different training stages.
• Foundation Data (FD): We use 595K images from CC-

3M [51], 558K from LCS [34], and a subset of LAION-
2B-en [48] for basic image-caption alignment.

• Perception Data (PD): We incorporate 50.6K samples
from RefCOCO [24] and 66.2K from AOKVQA [49] to
enhance detailed visual perception.

• Reasoning Data (RD): We utilize 504K general QA
entries and 343K reasoning-focused entries from the
LLaVA-OneVision Dataset [26].

• Instruction Data (ID): We include 57.3K entries from
ShareGPT4o [9], 70K from ALLaVA Inst [8], 180K
OCR-related entries from LLaVA-OneVision, and 100K
from Infinity-MM [18].
Our curriculum learning approach relies on carefully

designed data composition ratios that shift across training
stages:
• Stage 1 (Embedding Alignment): RFD ≫ RPD >
RRD = RID = 0, focusing primarily on foundation data
with some perception data

• Stage 2 (Selective Fine-tuning): RFD ≈ RPD >
RRD > RID, with increased emphasis on perception and
reasoning data

• Stage 3 (Full Fine-tuning): RID > RRD > RFD ≈
RPD, prioritizing instruction and reasoning data
Specifically, table 7 presents the specific percentage

breakdown for each data type across the three training
stages.

Training Stage FD PD RD ID

Stage 1 (Embedding Alignment) 80% 20% 0% 0%
Stage 2 (Selective Fine-tuning) 40% 30% 20% 10%
Stage 3 (Full Fine-tuning) 15% 15% 30% 40%

Table 7. Data composition ratios (%) across training stages



B. Case Study
# Case 1

Question: Please give me a detailed de-
scription of this image.

UniBPE-VL: In this image, a man wearing a turquoise t-shirt
and navy shorts is sitting on a gray bollard with red stripes.
To his left, a brown and white dog sits on the brick pavement,
connected to the man by a leash. The dog appears calm while
the man sits with one leg extended. They are on a brick side-
walk in front of a building with display windows.

Being-VL-0: There is a person sitting with a dog beside him.
The person is wearing a blue shirt and shorts. The dog is
brown and white. They are in front of a building with win-
dows. The person is sitting on a post, and the dog is sitting
on the ground. This appears to be in a city, with a brick floor.

Key Differences: Our method captures more precise visual
details (specific colors and features) and clearer spatial rela-
tionships between the man and dog in the scene.

# Case 2

Question: Please narrate what you ob-
serve in this image.

UniBPE-VL: The image features a white seagull standing
on wooden deck planks in the foreground. The bird is posi-
tioned in profile, facing right, with its yellow beak and pink
feet contrasting against its white and light gray feathers. In
the background is an orange and black tour boat navigating
through brownish water. The boat has a covered upper area
and appears to be carrying passengers. The wooden deck
seems to be part of a wharf or landing platform.

Being-VL-0: In the image, there’s a seagull standing on a
wooden platform. The seagull is white with a yellow beak.
In the background, there’s a boat on brown water. The seagull
is looking in one direction while standing on wooden boards.
The boat is orange and black with some people on it.

Key Differences: Our method provides more detailed de-
scriptions of visual elements (seagull’s features) and better
spatial understanding of the scene components.

# Case 3

Question: Could you describe what you
see in this image?

UniBPE-VL: This image shows a European urban trans-
portation scene. In the foreground, two cyclists are riding
on a dedicated bike lane that runs parallel to tram tracks.
The leftmost cyclist wears a checkered shirt and has a bag
on his bicycle rack. The scene displays structured transporta-
tion zones: pedestrian sidewalk, cycling path, and tram tracks
integrated together. In the background stands a large historic
building with distinctive architecture. The sky is blue with
white clouds.

Being-VL-0: The image shows a city street with people rid-
ing bicycles. There are tram tracks on the ground and large
buildings in the background. On the left, a person with a
checkered shirt is riding a bicycle. The sky is blue with some
clouds. This appears to be a European city based on the ar-
chitecture and transportation setup.

Key Differences: Our method provides more detailed de-
scription of key elements and offers clearer understanding of
the transportation infrastructure organization.

In this section, we present qualitative examples to
demonstrate the enhanced visual understanding capabilities
of our approach compared to the frequency-only BPE base-
line (Being-VL-0). These cases demonstrate several key ad-
vantages of our approach:
• Semantic Integrity: Our priority-guided encoding bet-

ter preserves complete semantic entities (people, animals,
vehicles) as coherent token groups, enabling more accu-
rate descriptions of subjects.

• Spatial Relationship Understanding: By incorporating
spatial consistency in our encoding strategy, our model
shows enhanced ability to describe relative positioning of
elements within the scene.

• Fine-grained Visual Detail Recognition: Our approach
better captures small but significant visual details, includ-
ing colors, patterns, and distinctive features.

• Structural Pattern Recognition: The unified token cre-
ated by our method facilitates stronger recognition of
functional structures and their relationships within the
scene.



Algorithm 2 Priority-Guided Encoding (Detailed Version)

1: Input: Quantized training data C, initial vocabulary V , target vocabulary size |D|, spatial weight α, filtering threshold τ
2: Output: Extended vocabulary D
3: D ← V ▷ Initialize with base vocabulary
4: while |D| < target size do
5: P ← ∅ ▷ Priority scores for token pairs
6: for each image I in C do
7: for each position (i, j) in I do
8: Consider horizontal pair (Ii,j , Ii,j+1) if valid
9: Consider vertical pair (Ii,j , Ii+1,j) if valid

10: Update frequency counts for all considered pairs
11: end for
12: end for
13: for each token pair (a, b) with nonzero frequency do
14: F (a, b)← count(a, b)/

∑
x,y count(x, y) ▷ Normalized frequency

15: ū(a, b)← (0, 0) ▷ Initialize average relative position
16: for each occurrence of pair (a, b) in position (i, j, d) do
17: ui(a, b)← (0, 1) if d is horizontal, (1, 0) if d is vertical
18: ū(a, b)← ū(a, b) + ui(a, b)
19: end for
20: ū(a, b)← ū(a, b)/Na,b ▷ Average relative position
21: S(a, b)← 0 ▷ Initialize spatial consistency
22: for each occurrence of pair (a, b) with position ui(a, b) do
23: d(ui, ū)← exp(−∥ui − ū∥2/2σ2) ▷ Spatial similarity
24: S(a, b)← S(a, b) + d(ui, ū)
25: end for
26: S(a, b)← S(a, b)/Na,b ▷ Average spatial consistency
27: P (a, b)← F (a, b) + α · S(a, b) ▷ Combined priority score
28: end for
29: Select top-k pairs by priority: {(a1, b1), . . . , (ak, bk)}
30: Filter out pairs with similarity > τ to existing tokens
31: (a∗, b∗)← argmaxi∈{1,...,k} P (ai, bi)
32: Create new token c = (a∗, b∗)
33: D ← D ∪ {c}
34: Update C by replacing all adjacent occurrences of (a∗, b∗) with c
35: end while
36: return D



C. Broader Impact
This work advances multimodal understanding through a
unified token-based approach, with several potential soci-
etal implications. On the positive side, improved visual-
language integration could enhance accessibility technolo-
gies for visually impaired users, enable more natural
human-computer interaction, and support educational appli-
cations through better comprehension of multimodal learn-
ing materials. Our method’s unified representation strategy
may also lead to more computationally efficient models,
potentially reducing the environmental footprint of multi-
modal AI systems.

However, like other powerful visual-language models,
our approach could be misused to generate misleading con-
tent if deployed without proper safeguards. Models with
enhanced visual understanding may also inherit or amplify
biases present in training data. We encourage thoughtful
consideration of these risks in downstream applications,
including implementing appropriate content filtering, con-
ducting fairness evaluations across diverse demographics,
and establishing clear guidelines for responsible deploy-
ment. Furthermore, the growing computational require-
ments for training such models raise sustainability concerns
that should be addressed through efficiency optimizations
and responsible resource use.

D. Detail of Priority-Guided Encoding
Algorithm 2 presents the complete version of our priority-
guided encoding process (Algorithm 1) in the main
manuscript. The key extensions compared to the simplified
version include:
• Comprehensive processing of both horizontal and verti-

cal. adjacencies in two-dimensional visual data.
• Detailed calculation procedures for spatial consistency

metrics
• Implementation of the diversity filtering mechanism to

ensure vocabulary coverage.

E. Licenses
In our code, we have used the following libraries which are
covered by the corresponding licenses:
• Numpy (BSD-3-Clause license)
• PyTorch (BSD-3-Clause license)
• Transformers (Apache license)
• Numba (BSD-2-Clause license)
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